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Abstract

Heat transport at the microscale is of vital importance in microtechnology applications. The heat transport equation

is different from the traditional heat diffusion equation since a second-order derivative of temperature with respect to

time and a third-order mixed derivative of temperature with respect to space and time are introduced. In this study, we

consider the heat transport equation in spherical coordinates and develop a three level finite difference scheme for

solving the heat transport equation in a microsphere. It is shown that the scheme is unconditionally stable and con-

vergent. The method is illustrated by two numerical examples.

� 2003 Elsevier Ltd. All rights reserved.
1. Introduction

Heat transport through thin films or micro-objects is

of vital importance in microtechnology applications

[1,2]. For instance, thin films of metals, of dielectrics such

as SiO2, or Si semiconductors are important components

of microelectronic devices. The reduction of the device

size to microscale has the advantage of enhancing the

switching speed of the device. On the other hand, size

reduction increases the rate of heat generation which

leads to a high thermal load on the microdevice. Heat

transfer at the microscale is also important for the pro-

cessing of materials with a pulsed-laser [3,4]. Examples in

metal processing are laser micromachining, laser pat-

terning, laser processing of diamond films from carbon

ion implanted copper substrates, and laser surface

hardening. Hence, studying the thermal behavior of thin

films or of micro-objects is essential for predicting the

performance of a microelectronic device or for obtaining

the desired microstructure [2]. The heat transport equa-
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tions used to describe the thermal behavior of micro-

structures are expressed as [5,6]:

�r �~qqþ Q ¼ qCp
oT
ot

; ð1Þ

~qqþ sq
o~qq
ot

¼ �k rT
�

þ sT
o

ot
½rT �

�
; ð2Þ

where ~qq ¼ ðq1; q2; q3Þ is heat flux, T is temperature, k is

conductivity, Cp is specific heat, q is density, Q is a heat

source, sq and sT are positive constants, which are the

time lags of the heat flux and temperature gradient,

respectively. Eqs. (1) and (2) are normally termed in the

literature as energy balance equation and constitutive

relation of heat flux density, respectively. In the classical

theory of diffusion, the heat flux vector (~qq) and the

temperature gradient (rT ) across a material volume are

assumed to occur at the same instant of time. They

satisfy the Fourier’s law of heat conduction:

~qqðx; y; z; tÞ ¼ �krT ðx; y; z; tÞ: ð3Þ

However, if the scale in one direction is at the sub-

microscale, i.e., the order of 0.1 lm, then the heat flux

and temperature gradient in this direction will occur at

different times, as shown in Eq. (2) [5]. The significance
ed.
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Nomenclature

A, B, C constant coefficients

Cp heat capacity

E�1=2 finite difference operator

J laser fluence

k thermal conductivity

L the length of radius of the sphere

N number of grid points

Ph finite difference operator

Q heat source

R reflectivity

r radius

T , T1 temperature

t, t0 time

tp laser pulse duration

unj mesh function where n is the time level and j
is the grid point

e difference between the exact solution and

numerical solution

rr, r�rr first order forward, backward finite differ-

ences

DT temperature change

Dt, Dr time increment, grid size

q density

r truncation error

sq time lag of the heat flux

sT time lag of the temperature gradient
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of the heat transfer equations (1) and (2) as opposed to

the classical heat transfer equations has been discussed

in [5] (see pp. 127–128). In Fig. 5.9 (see p. 128 in [5]) the

author shows that for sT ¼ 90 ps and sq ¼ 8:5 ps the

predicted change in DT
DTmax

over time gave an excellent fit to

the data and was significantly different from that pre-

dicted by the classic heat transfer equations.

Analytic and numerical methods for solving the

above coupled Eqs. (1) and (2) have been widely inves-

tigated [5–22]. Tzou and €OOzisik [5,6] considered Eqs. (1)

and (2) in one dimension and eliminated the heat flux ~qq
to obtain a dimensionless heat transport equation as

follows:

A
oT
ot

þ B
o2T
ot2

¼ o2T
ox2

þ C
o3T
ox2ot

þ G; ð4Þ

where A ¼ qCp

k , B ¼ sqqCp

k , C ¼ sT , and G ¼ 1
k ðQþ sq

oQ
ot Þ.

They studied the lagging behavior by solving the above

heat transport equation (4) without body heating in a

semi-infinite interval, ½0;þ1Þ. The solution was ob-

tained by using the Laplace transform method and the

Riemann-sum approximation for the inversion [8]. Tzou

and Chiu [9] also studied the temperature-dependent

thermal lagging in ultrafast laser heating. Wang et al.

[10–12] developed methods of measuring the phase-lags

of the heat flux and the temperature gradient and ob-

tained analytical solutions for 1D, 2D and 3D heat

conduction domains under essentially arbitrary initial

and boundary conditions. Solution structure theorems

were also developed for both mixed and Cauchy prob-

lems of dual-phase-lagging heat conduction equations.

Tang and Araki [14] derived an analytic solution in finite

rigid slabs by using the Green’s function method and a

finite integral transform technique. Lin et al. [15] ob-

tained an analytic solution using the Fourier series. Al-

Nimr and Arpaci [16] proposed a new approach, based

on the physical decoupling of the hyperbolic two-step
model, to describe the thermal behavior of a thin metal

film exposed to picoseconds thermal pulses. Chen and

Beraun [17] employed the corrective smoothed particle

method to obtain a numerical solution of ultrashort

laser pulse interactions with metal films. Dai and Nassar

[18] developed a two-level finite difference scheme of the

Crank–Nicholson type by introducing an intermediate

function for solving Eq. (4) in a finite interval. It is

shown by the discrete energy method that the scheme is

unconditionally stable. The scheme has been generalized

to a three-dimensional rectangular thin film case where

the thickness is at the sub-microscale [19]. Further, Dai

and Nassar [20,21] developed high-order uncondition-

ally stable two-level compact finite difference schemes

for solving Eq. (4) in one- and three-dimensional thin

films, respectively. In this article, we consider the case

where the heat transport is in a microsphere. The heat

transport in a microsphere is important not only in

microtechnology applications (such as predicting the

thermal energy around a microvoid in order to improve

the efficiency of thermal processing [5]) but also in bio-

medical applications, such as hyperthermia cancer

therapy [23]. One needs to predict the temperature dis-

tribution in a tumor in order to evaluate the thermal

success of hyperthermia cancer treatments and optimize

their applications. In this study, we assume that the laser

irradiation is symmetric on the surface of the sphere for

simplicity. As such, Eq. (4) used to describe the thermal

behavior of a microsphere in spherical coordinates can

be written as follows:

qC
oT
ot

�
þ sq

o2T
ot2

�

¼ k
r2

o

or
r2
oT
or

� �
þ sT

k
r2

o

or
r2

o2T
orot

� �
þG; 0 < r < L;

ð5Þ
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where L is the radius of the sphere. The initial and

boundary conditions are assumed to be

T ðr; 0Þ ¼ 0;
oT ðr; 0Þ

ot
¼ 0 ð6Þ

and

oT ð0; tÞ
or

¼ oT ðL; tÞ
or

¼ 0: ð7Þ

Such boundary conditions arise from the case where the

sphere is subjected to a short-pulse laser irradiation.

Hence, one may assume no heat losses from the spher-

ical surface in the short time response [5]. However,

other boundary conditions can be applied without dif-

ficulty. Since the well-posedness of the dual-phase-lag-

ging heat conduction equation, Eq. (4), and the analytic

solutions of Eqs. (5)–(7) have been discussed in [10–

12,22], we assume that the solution of the above initial

and boundary value problem is smooth. Because the

exact solution is difficult to obtain in general, our

interest is in developing an unconditionally stable and

convergent finite difference scheme for solving the above

initial and boundary value problem. Unconditional

stability and convergence are particularly important so

that there are no restrictions on the mesh ratio, since the

grid size in the r-direction of the solution domain is very

small.
2. Finite difference scheme

We denote T n
j as the numerical approximation of

T ðjDr; nDtÞ, where Dr and Dt are the r directional spatial
and temporal mesh sizes, respectively, and 06 j6N so

that NDr ¼ L. We use the following difference operators:

rrT n
j ¼

T n
jþ1 � T n

j

Dr
; r�rrT n

j ¼
T n
j � T n

j�1

Dr
:

A three-level finite difference scheme for solving the

above initial and boundary problem (Eqs. (5)–(7)) is

developed as follows:

qC
T nþ1
j � T n�1

j

2Dt

 
þ sq

T nþ1
j � 2T n

j þ T n�1
j

ðDtÞ2

!

¼ k
r2j
Ph

T nþ1
j þ 2T n

j þ T n�1
j

4

 !

þ sT
k
r2j
Ph

T nþ1
j � T n�1

j

2Dt

 !
þ Gn

j ; 16 j6N � 1;

ð8Þ

where Ph is an operator such that

PhðTjÞ � r2jþð1=2Þ
Tjþ1 � Tj
ðDrÞ2

� r2j�ð1=2Þ
Tj � Tj�1

ðDrÞ2
: ð9Þ
The initial and boundary conditions are discretized as

follows:

T 0
j ¼ T 1

j ¼ 0 ð10Þ

and

r�rrT n
1 ¼ 0; r�rrT n

N ¼ 0 ð11Þ

for any time level n. It should be pointed out that we use

a weighted average
T nþ1
j þ2T n

j þT n�1
j

4
for stability and con-

vergence.

The stability and convergence of the scheme (Eqs.

(8)–(11)) are shown by using the discrete energy method

[24,25]. Two theorems are obtained as follows:

Theorem 1. Assume that T n
j and Sn

j satisfy Eq. (8) and the
same initial and boundary conditions, Eqs. (10) and (11),
but different source terms G1 and G2. Let unj ¼ T n

j � Sn
j .

Then unj satisfies, for any 0 < nDt6 t0,

4qCsq r unþ1
��� � un

���2 þ kDt2 E�1=2r
� �

r�rr unþ1
��� þ un

���2
1

6 2t0Dt max
06m6 n

kgmk2; ð12Þ

where gnj ¼ ðG1Þnj � ðG2Þnj , and E�1=2 is a shift operator
such that E�1=2rj ¼ rj�ð1=2Þ. Hence, the scheme is uncon-
ditionally stable with respect to the source term.

Theorem 2. Assume that the solution of the initial and
boundary value problem, Eqs. (8)–(11), is smooth. Let
enj ¼ T ðjDr; nDtÞ � T n

j , where T ðjDr; nDtÞ and T n
j are the

exact solution and numerical solution, respectively. Then,
enj satisfies, for 06 jDr6 L and 06 nDt6 t0,

4qCsq r enþ1
��� � en

���2 þ kðDtÞ2 E�1=2r
� �

r�rr enþ1
��� þ en

���2
1

6 4qCsqkr e1
�

� e0
�
k2 þ kðDtÞ2 E�1=2r

� �
r�rr e1
��� þ e0

���2
1

þ 2t0Dt max
06m6 n

kqmk2
�

þ rmk k2
	

þ kt0ðC1 þ C2ÞDtDrmax
r;t

o2T
or2











2

þ kt0sT ðC3 þ C4ÞDtDrmax
r;t

o3T
or2ot











2

; ð13Þ

where Ci, i ¼ 1; 2; 3; 4, are positive constants. Hence, the
scheme is unconditionally convergent.

Here, the inner products and norms are defined as

follows:

ðu; vÞ ¼ Dr
XN�1

j¼1

uj � vj; kuk2 ¼ ðu; uÞ

and

r�rru
�� ��2

1
¼ ðr�rruj;r�rrujÞ1 ¼ Dr

XN
j¼1

ðr�rrujÞ2:
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The proofs of the above two theorems are placed in

Appendix A.
Fig. 2. Comparison of the numerical solutions with the exact

solution where Dr ¼ 0:001 and Dt ¼ 0:001.
3. Numerical examples

To test the accuracy of our scheme, Eqs. (8) and (9),

with initial and boundary conditions, Eqs. (10) and (11),

we consider a simple initial and boundary value problem

oT
ot

þ 1

2p2

o2T
ot2

¼ 1

r2
o

or
r2
oT
or

� �
þ 1

p2r2
o

or
r2

o2T
orot

� �

� p2

2
e�p2t cosðprÞ; ð14Þ

where the exact solution is

T ðr; tÞ ¼ e�p2t cosðprÞ; r 2 ½0; 1�: ð15Þ

The initial and boundary conditions are chosen from

the exact solution. To apply our scheme, we chose

Dt ¼ 0:001 and Dr ¼ 0:0025, 0.001. Numerical results

for t ¼ 0:1, 0.2 and 0.5 are shown in Figs. 1 and 2. In

Fig. 1, the maximum errors at t ¼ 0:1, 0.2, and 0.5 were

4.1561· 10�3, 4.0482 · 10�3, and 3.7276 · 10�3, respec-

tively. In Fig. 2, the maximum errors at t ¼ 0:1, 0.2, and
0.5 were 1.6596 · 10�3, 1.6147· 10�3, and 1.4855· 10�5,

respectively. From these two figures, we can see that the

numerical solutions are convergent to the exact solution.

To demonstrate the applicability of the scheme, we

investigate the temperature rise in a gold sphere. The

radius (L) for the gold sphere is 0.1 lm. The properties

of gold are Cp ¼ 129 kJ/kg/K, k ¼ 315 W/m/K,
Fig. 1. Comparison of the numerical solutions with the exact

solution where Dr ¼ 0:0025 and Dt ¼ 0:001.
q ¼ 19; 300 kg/m3, sq ¼ 8:5 ps (1 ps¼ 10�12 s) and

sT ¼ 90 ps [5].

The heat source was chosen to be [5]

Qðr; tÞ ¼ 0:94J
1� R
tpd

� �
e
�L�r

d �2:77
t�2tp
tp

� 	2

; ð16Þ

where J ¼ 13:4 J
m2, tp ¼ 100 fs (1 fs ¼ 10�15 s), d ¼ 15:3

nm (1 nm¼ 10�9 m), and R ¼ 0:93.
The initial conditions were chosen as follows:

T ðx; y; z; 0Þ ¼ T1;
oT
ot

ðx; y; z; 0Þ ¼ 0; ð17Þ

where T1 ¼ 300 K.

The boundary conditions were assumed to be insu-

lated. Such boundary conditions arise from the case that

the microsphere is subjected to a short-pulse laser irra-

diation. Hence, one may assume no heat losses from the

spherical surface in the short-time response [5].

To apply our scheme, we chose three different meshes

of 100, 200 and 400 grid points. The time increment was

chosen to be 0.005 ps.

Fig. 3 shows the change in temperature DT
ðDT Þmax

� 	
on

the surface of the gold sphere. The maximum tempera-

ture rise of T (i.e., ðDT Þmax) on the surface of the gold

sphere is about 14.60 K. It can be seen from the figure

that there is a significant difference between the dual-

phase-lagging behavior and diffusion (no dual-phase-

lagging). Also, the maximum temperature rise of T (i.e.,

ðDT Þmax) on the surface of the gold sphere is about 20

K for diffusion.



Fig. 3. Normalized temperatures at the surface of a 100-nm

gold sphere irradiated with a 0.1-ps laser pulse at a fluence of

13.4 J/m2.
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Fig. 4 gives the temperature rise along the r-axis for
different times (t ¼ 0:2, 0.3, 0.5, 1.0 and 10.0 ps). It can

be seen from Fig. 4 that the temperature rise is on the

surface and heat is transferred to the center of the sphere

until it approximately reaches steady state at t ¼ 10:0 ps.
Fig. 4. Calculated temperature profiles for a 100-nm gold

sphere irradiated with a 0.1-ps laser pulse at a fluence of 13.4 J/

m2.
4. Conclusion

In this study, we develop a three-level finite difference

scheme for solving a dual-phase-lagging heat transport

equation in spherical coordinates. It is shown by the

discrete energy method that this scheme is uncondi-

tionally stable and convergent. Numerical results show

that the scheme is efficient.
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Appendix A

We will employ the discrete energy method [24,25] to

show the stability and convergence of the scheme, Eqs.

(8)–(11). To this end, we first introduce the definitions of

the inner products and norms between the mesh func-

tions uj and vj. Let Sh be a set of fu ¼ fujgNj¼0g. For any
u, v 2 Sh, the inner products and norms are defined as

follows:

ðu; vÞ ¼ Dr
XN�1

j¼1

uj � vj; kuk2 ¼ ðu; uÞ

and

kr�rruk21 ¼ ðr�rruj;r�rrujÞ1 ¼ Dr
XN
j¼1

ðr�rrujÞ2:

The following Lemmas 1 and 2 can be easily obtained.

Lemma 1. For any n,

Dr
XN�1

j¼1

r2j T nþ1
j

�
� 2T n

j þ T n�1
j

	
� T nþ1

j

�
� T n�1

j

	

¼ Dr
XN�1

j¼1

r2j � T nþ1
j

��
� T n

j

	2
� T n

j

�
� T n�1

j

	2�

¼ r T nþ1
��� � T n

���2 � r T n
��� � T n�1

���2: ðA:1Þ
Lemma 2. For any n,

Dr
XN
j¼1

E�1=2r2j
� 	

r�rr T nþ1
j

�
þ 2T n

j þ T n�1
j

	

� r�rr T nþ1
j

�
� T n�1

j

	

¼ Dr
XN
j¼1

E�1=2r2j
� 	

� r�rr T nþ1
j

���
þ T n

j

		2

� r�rr T n
j

��
þ T n�1

j

		2�
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¼ E�1=2r
� �

r�rr T nþ1
��� þ T n

���2
1

� E�1=2r
� �

r�rr T n
��� þ T n�1

���2
1
; ðA:2Þ

where E�1=2 is a shift operator such that E�1=2rj ¼ rj�ð1=2Þ.

Lemma 3. For any mesh functions Tj and Sj,

Dr
XN�1

j¼1

PhðTjÞ � Sj ¼ �Dr
XN
j¼1

r2j�ð1=2Þr�rrTj � r�rrSj

� r2ð1=2Þr�rrT1 � S0 þ r2N�ð1=2Þr�rrTN � SN :
ðA:3Þ

Proof. One may obtain from Eq. (9) that

Dr
XN�1

j¼1

PhðTjÞ � Sj

¼ Dr
XN�1

j¼1

r2jþð1=2Þ
Tjþ1 � Tj
ðDrÞ2

Sj � Dr
XN�1

j¼1

r2j�ð1=2Þ
Tj � Tj�1

ðDrÞ2
Sj

¼ Dr
XN
j¼2

r2j�ð1=2Þ
Tj � Tj�1

ðDrÞ2
Sj�1 � Dr

XN�1

j¼1

r2j�ð1=2Þ
Tj � Tj�1

ðDrÞ2
Sj

¼ Dr
XN
j¼1

r2j�ð1=2Þ
Tj � Tj�1

ðDrÞ2
Sj�1 � Dr

XN
j¼1

r2j�ð1=2Þ
Tj � Tj�1

ðDrÞ2
Sj

� r2ð1=2Þ
T1 � T0
Dr

S0 þ r2N�ð1=2Þ
TN � TN�1

Dr
SN

¼ �Dr
XN
j¼1

r2j�ð1=2Þr�rrTj � r�rrSj � r2ð1=2Þ
T1 � T0
Dr

S0

þ r2N�ð1=2Þ
TN � TN�1

Dr
SN

¼ �Dr
XN
j¼1

r2j�ð1=2Þr�rrTj � r�rrSj � r2ð1=2Þr�rrT1 � S0

þ r2N�ð1=2Þr�rrTN � SN : � ðA:4Þ
j j j j
Proof of Theorem 1. It can be seen that unj satisfies

qC
unþ1
j � un�1

j

2Dt

 
þ sq

unþ1
j � 2unj þ un�1

j

ðDtÞ2

!

¼ k
r2j
Ph

unþ1
j þ 2unj þ un�1

j

4

 !

þ sT
k
r2j
Ph

unþ1
j � un�1

j

2Dt

 !
þ gnj ; 16 j6N � 1

ðA:5Þ

and the initial condition

u0j ¼ u1j ¼ 0; 16 j6N � 1 ðA:6Þ

and boundary condition

r�rrun1 ¼ 0; r�rrunN ¼ 0; nP 0: ðA:7Þ
Multiplying Eq. (A.5) by 4ðDtÞ2Dr � r2j ðunþ1

j � un�1
j Þ

and summing j from 1 to N � 1, we obtain by Lemmas

1–3 and Eq. (A.7)
2qCDtkrðunþ1 � un�1Þk2 þ 4qCsq krðunþ1
h

� unÞk2

� krðun � un�1Þk2
i

¼ �kðDtÞ2 E�1=2r
� �

r�rrðunþ1
��h þ unÞ

��2
1

� E�1=2r
� �

r�rrðun
�� þ un�1Þ

��2
1

i
� 2kDtsT E�1=2r

� �
r�rrðunþ1

�� � un�1Þ
��2
1

þ gn; 4ðDtÞ2r2ðunþ1
�

� un�1Þ
	
: ðA:8Þ

By Cauchy–Schwarz’s inequality, we obtain

4ðDtÞ2 gn; r2ðunþ1
�

� un�1Þ
�

6 2ðDtÞ2 kgnk2
h

þ kr2ðunþ1 � un�1Þk2
i

6 2ðDtÞ2 kgnk2
h

þ L2krðunþ1 � un�1Þk2
i
: ðA:9Þ

Hence, Eq. (A.8) becomes

Dtð2qC � 2DtL2Þ rðunþ1
�� � un�1Þ

��2
þ 4qCsq rðunþ1

��h � unÞ
��2 � rðun

�� � un�1Þ
��2i

þ kðDtÞ2 E�1=2r
� �

r�rrðunþ1
��h þ unÞ

��2
1

� E�1=2r
� �

r�rrðun
�� þ un�1Þ

��2
1

i
þ 2kDtsT E�1=2r

� �
r�rrðunþ1

�� � un�1Þ
��2
1

6 2Dt2 gnk k2: ðA:10Þ

Choosing Dt so that 2qC � 2DtL2 P 0, dropping out the

first and fourth terms on the left-hand-side of Eq.

(A.10), and then using Eq. (A.6), we obtain

4qCsq rðunþ1
�� � unÞ

��2 þ kðDtÞ2 E�1=2r
� �

r�rrðunþ1
�� þ unÞ

��2
1

6 4qCsq rðun
�� � un�1Þ

��2
þ kðDtÞ2 E�1=2r

� �
r�rrðun

�� þ un�1Þ
��2
1
þ 2ðDtÞ2kgnk2

6 � � � 6 4qCsq rðu1
�� � u0Þ

��2
þ kDt2 E�1=2r

� �
r�rrðu1

�� þ u0Þ
��2
1
þ 2nDt2 max

06m6 n
kgmk2

6 2t0Dt max
06m6 n

kgmk2; ðA:11Þ

which completes the proof. h

Proof of Theorem 2. It can be seen that enj satisfies

qC
enþ1
j � en�1

j

2Dt

 
þ sq

enþ1
j � 2enj þ en�1

j

ðDtÞ2

!

¼ k
r2j
Ph

enþ1
j þ 2enj þ en�1

j

4

 !
þ sT

k
r2j
Ph

enþ1
j � en�1

j

2Dt

 !

þ qnj þ rn
j ðA:12Þ

and initial and boundary conditions

e0 ¼ f 0; e1 ¼ f 1 ðA:13Þ
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and

en1 � en0
Dr

¼ gn1;
enN � enN�1

Dr
¼ gn2 ðA:14Þ

for any level n. Here, gn1 ¼ 1
2
Dr o2T ðhDr;nDtÞ

or2 , gn2 ¼
1
2
Dr o2T ððN�1þfÞDr;nDtÞ

or2 , where 06 h, f6 1. Furthermore, qnj
represents the error between GðjDr; nDtÞ and Gn

j , and rn
j

represents the truncation error of the scheme. It can be

seen that rn
j ¼ OðDt2 þ Dr2Þ.

Multiplying Eq. (A.12) by 4ðDtÞ2Dr � r2j ðenþ1
j � en�1

j Þ,
summing j from 1 to N � 1, and using Lemmas 1–3, one

obtains

2qCDt rðenþ1
�� � en�1Þ

��2 þ 4qCsq rðenþ1
��h � enÞ

��2
� rðen
�� � en�1Þ

��2iþ kðDtÞ2 E�1=2r
� �

r�rrðenþ1
��h þ enÞ

��2
1

� E�1=2r
� �

r�rrðen
�� þ en�1Þ

��2
1

i
þ 2ksTDt E�1=2r

� �
r�rr enþ1
��� � en�1

���2
1

¼ kðDtÞ2r2N�ð1=2Þr�rr enþ1
N

�
þ 2enN þ en�1

N

�
� enþ1

N

�
� en�1

N

�
� k Dtð Þ2r2ð1=2Þr�rrðenþ1

1 þ 2en1 þ en�1
1 Þ � enþ1

0

�
� en�1

0

�
þ 2DtksT r2N�ð1=2Þr�rr enþ1

N

�
� en�1

N

�
� enþ1

N

�
� en�1

N

�
� 2DtksT r2ð1=2Þr�rr enþ1

1

�
� en�1

1

�
� enþ1

0

�
� en�1

0

�
þ 4 Dtð Þ2 qn; r2 enþ1

��
� en�1

��
þ 4ðDtÞ2 rn; r2 enþ1

��
� en�1

��
: ðA:15Þ

We now estimate each term of the right-hand-side of

Eq. (A.15). Using the generalized Cauchy–Schwarz’s

inequality and Eq. (A.14), we estimate the first term as

follows:

kðDtÞ2r2N�ð1=2Þr�rr enþ1
N

�


 þ 2enN þ en�1
N

�
� enþ1

N

�
� en�1

N

�



¼ kðDtÞ2r2N�ð1=2Þ gnþ1

2

�


 þ 2gn2 þ gn�1
2

�
� enþ1

N�1

�
� en�1

N�1

þ Dr gnþ1
2

�
� gn�1

2

��



6 kðDtÞ2 Dr � r4N�ð1=2Þ enþ1

N�1

��
� en�1

N�1

�2
þ C1

Dr
jgnþ1

2 j2
�

þ jgn2j
2 þ jgn�1

2 tj2
	�

6 kðDtÞ2L2 r enþ1
��� � en�1

���2
þ kC1ðDtÞ2

Dr
jgnþ1

2 j2
�

þ jgn2j
2 þ jgn�1

2 j2
	

6 kðDtÞ2L2 r enþ1
��� � en�1

���2
þ kC1ðDtÞ2Drmax

r;t

o2T
or2











2

; ðA:16Þ

where C1 is a positive constant. Using a similar argu-

ment, we estimate the second, third and fourth terms as

follows
kðDtÞ2r2ð1=2Þr�rr enþ1
1

�


 þ 2en1 þ en�1
1

�
� enþ1

0

�
� en�1

0

�



¼ kðDtÞ2r2ð1=2Þ gnþ1

1

�


 þ 2gn1 þ gn�1
1

�
� enþ1

1

�
� en�1

1 � Dr gnþ1
1

�
� gn�1

1

��



6 kðDtÞ2 Dr � r4ð1=2Þ enþ1

1

��
� en�1

1

�2
þ C2

Dr
jgnþ1

1 j2
�

þ jgn1j
2 þ jgn�1

1 j2
	�

6 kðDtÞ2L2 r enþ1
��� � en�1

���2
þ kC2ðDtÞ2

Dr
gnþ1
1



 

2�
þ gn1


 

2 þ gn�1

1



 

2	
6 kðDtÞ2L2 r enþ1

��� � en�1
���2

þ kC2ðDtÞ2Drmax
r;t

o2T
or2











2

; ðA:17Þ

2DtksT r2N�ð1=2Þr�rr enþ1
N

�


 � en�1
N

�
� enþ1

N

�
� en�1

N

�



¼ 2DtksT r2N�ð1=2Þ gnþ1

2

�


 � gn�1
2

�
� enþ1

N�1

�
� en�1

N�1

þ Dr gnþ1
2

�
� gn�1

2

��



6 ksT ðDtÞ2Dr � r4N�ð1=2Þ enþ1

N�1

��
� en�1

N�1

�2
þ C3

Dr
gnþ1
2



 � gn�1
2



2�

6 ksT ðDtÞ2L2 rðenþ1
�� � en�1Þ

��2
þ ksTC3ðDtÞ2Drmax

r;t

o3T
or2ot











2

ðA:18Þ

and

2DtksT r2ð1=2Þr�rr enþ1
1

�


 � en�1
1

�
� enþ1

0

�
� en�1

0

�



¼ 2DtksT r

2
ð1=2Þ gnþ1

1

�


 � gn�1
1

�
� enþ1

1

�
� en�1

1 � Dr gnþ1
1

�
� gn�1

1

��



6 ksT ðDtÞ2Dr � r4ð1=2Þ enþ1

1

��
� en�1

1

�2 þ C4

Dr
gnþ1
1



 � gn�1
1



2�

6 ksT ðDtÞ2L2 r enþ1
��� � en�1

���2
þ ksTC4ðDtÞ2Drmax

r;t

o3T
or2ot











2

; ðA:19Þ

where C2, C3 and C4 are positive constants. Using

Cauchy–Schwarz’s inequality, we estimate the fifth and

sixth terms as follows

4Dt2 qn; r2 enþ1
��

 � en�1

��


6 2Dt2 qnk k2

h
þ L2 rðenþ1

�� � en�1Þ
��2i ðA:20Þ
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and

4Dt2 rn; r2 enþ1
��

 � en�1

��


6 2Dt2 rnk k2

h
þ L2 r enþ1

��� � en�1
���2i: ðA:21Þ

Substituting Eqs. (A.17)–(A.21) into Eq. (A.16), we

obtain

Dt 2qC
�

� 4L2Dt � 2kL2Dt � 2kL2sTDt
�
r enþ1
��� � en�1

���2
þ 4qCsq r enþ1

���h � en
���2 � r en

��� � en�1
���2i

þ kDt2 E�1=2r
� �

r�rr enþ1
���h þ en

���2
1

� E�1=2r
� �

r�rr en
��� þ en�1

���2
1

i
þ 2kDtsT E�1=2r

� �
r�rr enþ1
��� � en�1

���2
1

6 2Dt2 kqnk2
�

þ krnk2
	

þ kðC1 þ C2ÞðDtÞ2Drmax
r;t

o2T
or2











2

þ ksT ðC3 þ C4ÞðDtÞ2Drmax
r;t

o3T
or2ot











2

: ðA:22Þ

Choosing Dt so that 2qC� 4L2Dt� 2kL2Dt� 2kL2sTDtP
0, and dropping out the first and fourth terms on the

left-hand-side of Eq. (A.22), we obtain

4qCsq r enþ1
��� � en

���2 þ kðDtÞ2 E�1=2r
� �

r�rr enþ1
��� þ en

���2
1

6 4qCsq r en
��� � en�1

���2
þ kðDtÞ2 E�1=2r

� �
r�rr en
��� þ en�1

���2
1

þ 2ðDtÞ2 qnk k2
�

þ rnk k2
	

þ kðC1 þ C2ÞðDtÞ2Drmax
r;t

o2T
or2











2

þ ksT ðC3 þ C4ÞðDtÞ2Drmax
r;t

o3T
or2ot











2

6 � � � 6 4qCsq r e1
��� � e0

���2
þ kðDtÞ2 E�1=2r

� �
r�rr e1
��� þ e0

���2
1

þ 2t0Dt max
06m6 n

kqmk2
�

þ rmk k2
	

þ kt0ðC1 þ C2ÞDtDrmax
r;t

o2T
or2











2

þ kt0sT ðC3 þ C4ÞDtDrmax
r;t

o3T
or2ot











2

; ðA:23Þ

which completes the proof. h
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